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Abstract. We derive an exact analytic solution to a Klein–Gordon equation for a step potential
barrier with cutoff plane wave initial conditions, in order to explore wave evolution in a classical
forbidden region. We find that the relativistic solution rapidly evanesces within a depth 2xp inside
the potential, where xp is the penetration length of the stationary solution. Beyond the characteristic
distance 2xp, a Sommerfeld-type precursor travels along the potential at the speed of light, c.
However, no spatial propagation of a main wavefront along the structure is observed. We also
find a non-causal time evolution of the wavefront peak. The effect is only an apparent violation of
Einstein causality.

1. Introduction

Since the early beginnings of quantum mechanics, the problem of particle propagation
in classical forbidden regions has been the subject of both theoretical and experimental
investigations. Over the years, several non-relativistic approaches based on cutoff wave initial
conditions have been introduced in the literature in order to investigate the time-dependent
features of wave evolution in evanescent media. Some of these theoretical models [1–5] were
inspired by the pioneering work of Sommerfeld and Brillouin [6,7], while others [9–12] were
based on the seminal work of Moshinsky [13,14], who a few decades ago started a fundamental
discussion on the non-relativistic and relativistic transient effects. These models represent
important steps towards the clarification of the dynamics in classical forbidden regions, and
a renewed motivation to explore this problem has been recently stimulated by the issue of
superluminal velocities in photon [15,16] and microwave [17,18] tunneling. Hence, it is clear
that a full relativistic approach to describe the wave evolution in evanescent media is needed.
Nevertheless, this has become a complex problem due to the lack of exact analytical solutions
to relativistic wave equations with appropriate initial conditions. Among the few works in the
field [4, 5, 19], Deutch and Low [19] have provided a lucid description of barrier penetration
of an initial state given by a cutoff Gaussian wavepacket, based on a one-dimensional Klein–
Gordon equation. Although no exact relativistic solutions were obtained, the issues of Einstein
causality and superluminal phenomena were rigorously discussed using approximate solutions.

In this paper we consider a model based on the Klein–Gordon equation, as in the work of
Deutch and Low [19], for a potential step barrier and cutoff plane wave initial conditions. We
obtain an exact analytic solution to the problem along the potential region and study the main
features of wave evolution, in particular the regime of transient effects at early times.

The paper is organized as follows. In section 2 we discuss the shutter problem, and
present the analytical derivation for the solution to a relativistic wave equation for a step
potential barrier. Section 3 deals with a numerical example for the solution along the internal
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Figure 1. The shutter problem for a potential step barrier V0. An initial state ψ(x, 0) in the region
x < 0 is instantaneously released at t = 0 by the removal of the shutter S.

region of the potential, and the results are discussed in section 4. Finally, in section 5 we
present the summary and conclusions.

2. The relativistic shutter problem

To investigate the time evolution of a cutoff plane wave in a classical forbidden region, let
us consider a classical field ψs

r satisfying a one-dimensional Klein–Gordon equation with a
variable potential V (x), as in the model of Deutch and Low [19],

∂2

∂x2
ψs
r (x, kr , t) = 1

c2

∂2

∂t2
ψs
r (x, kr , t) + V0(x)ψ

s
r (x, kr , t). (1)

In our case, V0(x) is given by a step potential barrier,

V0(x) =
{
µ2

0 x � 0

0 x < 0
(2)

whereµ0 = (m0c/h̄), and the initial condition at t = 0 corresponds to a plane wave shutter [11]
(see figure 1), given by

ψr(x, t = 0) =
{

eikrx − e−ikrx x � 0

0 x > 0.
(3)

The simplicity of our quasi-monochromatic initial state (3) allows a closed analytical
solution of the problem. It differs from that of [19], where a cutoff Gaussian wavepacket initial
condition was considered. Note that condition (3) arises from the fact that for t < 0 the solution
for the left side of the shutter† is given by ψr(x, kr , t) = exp[ikr(x− ct)] − exp[−ikr(x + ct)]
for x < 0, and zero for x > 0.

To obtain the solution for x > 0 and t > 0, we shall proceed along the same lines as
in our recent work [11]. We begin by Laplace transforming equation (1) using the standard
definition

ψ(x, kr , s) =
∫ ∞

0
ψ(x, kr , t)e

−st dt (4)

† Note that the shutter is a device that aids us to visualize the initial condition and hence it is not part of the system.
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with the initial condition given by equation (3). As a consequence, one obtains a pair of
differential equations corresponding to the regions x > 0 and x < 0. In order to obtain the
transmitted wavefunction, one must consider the matching conditions for the wavefunction
and its derivative at x = 0. The Laplace transformed solution reads

ψ
s

r(x, s) = 2E

i(s + iE)(s + p)
e−px/c (5)

where p = (s2 + µ2
0c

2)1/2, and E = kr = (Er/h̄c) corresponds to the relativistic energy Er
given in reciprocal units of length.

The time dependent solution for x > 0 is readily obtained by performing the inverse
Laplace transform of equation (5) using the Bromwich integral formula,

ψs
r (x, t) = 1

2π i

∫ γ ′+i∞

γ ′−i∞
ψ
s

r(x, s)e
st ds (6)

where the integration path is taken along a straight line s = γ ′ parallel to the imaginary axis in
the complex s-plane. The real parameter γ ′ can be chosen arbitrarily as long as all singularities
remain to the left-hand side of s = γ ′.

The integral (6) expressed in this form is difficult to manipulate since the integrand (5)
has branch points at s = ±iµ0c. To surmount this difficulty, let us introduce the change
of variable, −iu = (s + p)/µ0c, which allows us to eliminate the branch points. Thus,
p = iµ0c(u

−1 − u)/2, and, as a consequence, the Bromwich integral may be written as

ψ(x, t) = 1

2π i

∫ iγ+∞

iγ−∞
F(u) du (7)

where the new integrand F(u) is given by

F(u) = 2E

µ0

(1 − u2)

u2(u2 − 2Eu/µ0 + 1)
exp{iµ0[u(x − ct)− u−1(x + ct)]/2}. (8)

Note that the branch points go into an essential singularity at u = 0 and two simple poles
u± = (E ± iq)/µ0, where we defined q = (µ0

2 − E2)1/2. The integration in equation (7) is
performed along a straight line L parallel to the real axis, cutting the positive imaginary axis
at iγ . We proceed to evaluate the above integral by considering a closed Bromwich integration
contour (see figure 2), and Cauchy’s residue theorem. For x > ct we close the integration
path L from above, by a large semicircle �1 of radius R, forming a closed contour C1. The
contribution along �2 vanishes as R → ∞, and, since there are no poles enclosed inside C1,
ψ(x, t) = 0 for x > ct . For the case x < ct , we close the integration path from below with
a large semicircle �2. The closed contour C2 contains three small circles C0, C+ and C−,
enclosing the essential singularity at u = 0 and the simple poles at u+ and u−, respectively.
Hence by using Cauchy’s theorem, it follows that

1

2π i

[ ∫ iγ+∞

iγ−∞
−

∫
�2

+
∫
C0

+
∫
C+

+
∫
C−

]
F(u) du = 0. (9)

The integrals corresponding to the contours C+ C− can be easily evaluated, and yield the
exponential contributions to (9), namely,

1

2π i

∫
C±
F(u) du = k±e(∓qx−iEct) (10)

where we defined k± = 2E/(E ± iq).
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Figure 2. Integration contours C2 = L + �2 + C0 + C+ + C− and C1 = L + �1, used to evaluate
equation (7). The infinite semicircles �1 and �2 (dashed circle) correspond to the cases x > ct

and x < ct , respectively.

The contour integration for C0 requires a more elaborate calculation, since it involves an
essential singularity at u = 0. For this case, we introduce the change of variable given by
ω = −iuξ−1, thus the integral now becomes∫

C0

F(u) du =
∫
C ′

0

2E

iµ0ξ 3

(1 + ω2ξ 2) exp[η(ω − ω−1)/2]

ω2(ω − ω+)(ω − ω−)
dω (11)

where ω± = (E± iq)/iµ0ξ . To carry out the integration, first let us separate the integrand into
partial fractions, and substitute the well known formula for the Bessel generating function,

eη(ω−ω−1)/2 =
∞∑
n=0

ωnJn(η) +
∞∑
n=1

(−1)nω−nJn(η) (12)

and the series expansion,

(ω± − ω)−1 = (ω±)−1
∞∑
n=0

(ω/ω±)nJn(η). (13)

The resulting integrals can be evaluated by means of the residue theorem. For the case of
an essential singularity, the residue may be determined by computing explicitly the coefficient
corresponding to ω−1 from the series expansion and their products. In that case, equation (11)
becomes

1

2π i

∫
C0

F(u) du =
[

2iE

µ0ξ
J1(η)− k+

∞∑
n=0

(−1)n
Jn(η)

(ω+)n
− k−

∞∑
n=0

(−1)n
Jn(η)

(ω−)n

]
. (14)

Finally, substituting the results given by equations (10) and (14) into (9), the solution for
the internal region is

ψs
r (x, t) =

{
ψ+(q) + ψ−(q) t > x/c

0 t < x/c
(15)

with ψ±(q) defined as

ψ±(q) = k±

[
e(∓qx−iEct) +

iz±
2ξ
J1(η)−

∞∑
n=0

(ξ/iz±)nJn(η)
]
. (16)
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In the above expression, Jn(η) represents the Bessel function of order n. The other parameters
are defined as ξ = [(ct + x)/(ct − x)]1/2, η = µ0(c

2t2 − x2)1/2 and z± = (E± iq)/µ0. From
equation (15) we see that the solution obeys Einstein causality, i.e. no propagation faster than
the speed of light, c, is detected along the barrier region. In other words, an observer located
at an arbitrary position x0 inside the barrier must wait a time t = (x0/c) before detecting the
arrival of the signal.

For the sake of completeness, let us now consider the asymptotic behaviour of ψs
r (x, t)

for the cases µ0 → 0, t → ∞ and x → ct . From the solution we have just discussed, one
may recover the free propagation solution in the limit µ0 → 0. This corresponds to letting the
variables η → 0, q → iE. To illustrate the limit process in equation (15), let us rewrite the
solution by using equation (12), namely,

ψs
r (x, t) = k−

[
e(qx−iEct) − J0(η)−

∞∑
n=1

(ξ/iz−)nJn(η)
]

+ k+

[ ∞∑
n=2

(z+/iξ)
nJn(η)

]
. (17)

As µ0 → 0, the variable J0(η) → 1, and since (z−)−1 → 0 the first series on the right-hand
side clearly vanishes. It can be shown that the second series also vanishes, by replacing the
Bessel functions by their asymptotic values for small values of the argument η,

Jn(η) 
 2−nηn/n!. (18)

Therefore, one obtains the solution for the free propagation case,

ψs
r (x, t) →

{
eikr (x−ct) − 1 t > x/c

0 t < x/c.
(19)

Note that the free case solution rises from zero only after a time t = (x/c) fulfilling
relativistic causality, and then oscillates periodically thereafter.

In the case of the long-time limit (t → ∞), we have ξ → 1 and η → ∞. From the
asymptotic expansion of Jn(η) for large values of the argument η,

Jn(η) 
 1

(πη/2)1/2
cos

[
η − 1

4
(2n + 1)π

]
(20)

and therefore Jn(η) → 0. One can see from equation (16) that the series in ψ+(q) vanishes.
On the other hand, if we rewrite ψ−(q) by means of equation (12), the exponential term is
cancelled and the remaining series vanishes. Consequently, ψs

r (x, t) goes into the stationary
solution φsr (x, t) given by

φsr (x, t) = k+e−qxe−iEct . (21)

The asymptotic behaviour near the relativistic cutoff is obtained when x → ct in equation
(15). In this case we have η → 0, which allows us to substitute the asymptotic expansion (18)
intoψ+(q) (equation (16)). Thus, the series of equation (16) goes into an exponential function,
which cancels exactly with the exponential term, and as a result the solution ψ+(q) goes like
iEJ1(η)/µ0ξ . From similar considerations on ψ−(q), an identical expression is obtained and
the approximate behaviour of ψs

r (x, t) near the cutoff is given by

ψs
r (x, t) ≈ 2iE

µ0ξ
J1(η) (22)

where, for exactly the value x = ct , the above expression goes to zero, fulfilling relativistic
causality.
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Figure 3. The birth of |ψs
r (x, t)|2 (solid curve) as a function of distance x for increasing values

of time: t1 = 0.001 fs, t2 = 0.0035 fs and t3 = 0.0075 fs. Note that |ψs
r (x, t)|2 fluctuates around

the stationary solution |φsr (x, t)|2 (dashed curve). The inset shows at a later time t4 = 0.012 fs the
birth of a Sommerfeld-type precursor near the relativistic cutoff at x = 3.0 nm.

3. Examples

In order to exemplify the evolution of the solution given by equation (15) along the evanescent
region, we decided to study the properties of |ψs

r (x, t)|2 as a function of time t and the
position x. The parameters for the system considered in all the cases for the present study are:
barrier heightµ0 = 1.542 nm−1 and incidence energyEr = 10.0 eV (E = 5.064×10−2 nm−1).

The first case corresponds to the spatial evolution of |ψs
r (x, t)|2 along the dispersive region.

In figure 3 we show at early times the birth of the main wavefront as a function of the position,
for increasing values of time: t1 = 0.001 fs, t2 = 0.0035 fs and t3 = 0.0075 fs. The solution
rises as time goes on, and at t3, |ψs

r (x, t)|2 has already crossed over the stationary solution
|φsr (x, t)|2 (dashed curve). The inset of figure 3 shows the crossover of |ψs

r (x, t)|2 at later time
t4 = 0.012 fs. This behaviour is relevant since it indicates that the relativistic solution fluctuates
around |φsr (x, t)|2 before reaching its asymptotic regime. In the inset, we can also observe
how the solution evanesces within a finite depth given approximately by 2xp = 1.317 nm,
where xp = (1/q) is the penetration length of the stationary solution |φsr (x, t)| = |k+|e−qx

(equation (21)). We find that beyond 2xp the solution exhibits a small maximum, corresponding
to the birth of a forerunner. In figure 4 we depict the spatial evolution of |ψs

r (x, t)|2 (solid
curve) for a fixed value of t = 0.05 fs. As can be seen in this example, the main part of the
wave rapidly evanesces in the potential region for small values of the position. However, from
approximately 2xp onwards, the solution exhibits an oscillatory behaviour before reaching the
relativistic cutoff at x = 15.0 nm, corresponding to the earliest arrival of the signal at a point
located within the potential. The stationary solution |φsr (x, t)|2 (dashed curve) is also included
for comparison. It is interesting to note the similarity of the oscillatory structure in figure 4
to the well known Sommerfeld precursor [8]†, which is one of the essential features of wave
propagation in dispersive media. Despite the fact that Sommerfeld’s approach is quite different
from ours, the similarities go beyond the numerical results. For instance, their asymptotic
analysis showed that the wave function is governed by a first-order Bessel function near the
relativistic cutoff. Our analysis reproduces such behaviour, which is given by equation (22).
For comparison, the value of the Bessel function J1(η), modulated by the prefactor 2iE/µ0ξ , is

† The experimental observation of Sommerfeld and Brillouin precursors has already been reported in the microwave
domain [20].
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Figure 4. Plot of |ψs
r (x, t)|2 (solid curve) as a function of distance x for a fixed value of time

t = 0.005 fs. Notice that the wavefunction exhibits a Sommerfeld-type precursor near the
relativistic cutoff at x = 15.0 nm. The precursor is accurately described in the vicinity of x = ct

by a Bessel function (dotted curve) given by equation (22). The stationary solution |φsr (x, t)|2
(dashed curve) is also depicted in the figure.

0.88 0.89 0.90
0.000

0.006

0.012

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

x=ct

| Ψ
|2  X

  
10

-4

Distance (10
2
 nm) 

Figure 5. The main graph, like the previous one, shows the evolution of |ψs
r (x, t)|2 (solid curve) at

a later time t = 0.3 fs. Note that the main part of the wave reaches the stationary solution |φsr (x, t)|2
(dashed curve) at this short time. The small Sommerfeld-type precursor can be observed near the
relativistic cutoff at x = 90.0 nm. In the inset we show that the precursor (solid curve) is well
described by equation (22) (dotted curve).

also included in figure 4 (dotted curve). Note that if we define the frequency of the oscillations
of the precursor in terms of the distance between successive zeros of J1(η), one sees from the
definition of the argument η that the value of the frequency depends only on the position x and
the potential µ0 that characterizes the medium, i.e. the precursor frequency is independent of
the incidence energy.

In figure 5 we show |ψs
r (x, t)|2 (solid curve) as a function of the position x, at a subsequent

time t = 0.3 fs. We can see that the solution reaches its stationary value |φsr (x, t)|2 (dashed
curve) for small values of x; nevertheless, near the relativistic cutoff at x = 90.0 nm, the
precursor exhibits a rich oscillatory structure. The inset of figure 5 illustrates the forerunner
near the cutoff, and shows that the asymptotic behaviour is dictated by the Bessel function of
equation (22) (dotted curve).
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Figure 6. The time evolution of |ψs
r (x, t)|2 for different values of the position: x1 = 0.4 nm,

x2 = 0.6 nm and x3 = 0.8 nm. Notice that the transient behaviour leading to the stationary regime
exhibits an oscillating pattern similar to the diffraction in time phenomenon.

Up to here we have illustrated the spatial behaviour of |ψs
r (x, t)|2, and some interesting

features of the time evolution. In order to fully explore the relevant features of the time
evolution, in figure 6 we plot |ψs

r (x, t)|2 as a function of time at different positions:
x1 = 0.4 nm, x2 = 0.6 nm and x3 = 0.8 nm. For all the curves depicted, as soon as
t > (x/c) the solution is different from zero along the internal region, fulfilling relativistic
causality. As can be seen, the solution rises from zero at t = (x/c) and grows monotonically
towards a maximum value, from which it starts to oscillate thereafter, forming a pattern
very similar to the diffraction in time phenomenon [13]. The concept of diffraction in time
was originally introduced by Moshinsky [13] while discussing the shutter problem for the
free particle Schrödinger equation. He observed a time-dependent oscillatory regime of the
probability density near the semiclassical wavefront that he named diffraction in time, in
analogy to the well known Fresnel optical diffraction. It is interesting to note the resemblance
of the oscillatory pattern in figure 6 to the diffraction in time phenomenon observed in the free
propagation case [11]. Moreover, in the low-energy regime (µ0/E � 1) solution (15) can be
rewritten in a more concise form by using equation (12), namely,

's
r (x, t) ≈ 2(E/V )[U3(iη/ξ, η)− U1(iη/ξ, η)] (23)

where U1 and U3 are the Lommel functions of two variables [22], widely used in connection
with optical diffraction [23]. The resemblance to diffraction phenomena suggests that there
exists a more profound link; however, the physical implications of the striking mathematical
similarities found above deserves further study.

It is important to mention that the transient effect depicted in figure 6 is observed in the
low-energy regime, i.e. (µ0/E) � 1; this condition is satisfied in the present example, where
the effect was observed for values of the ratio (µ0/E) 
 30. Moreover, we only observed
the phenomenon in the regime of small values of the position x where the solution decays in
the potential region i.e. x < 2xp. From values greater than x 
 2xp the solution enters a
different oscillatory regime, and the diffraction-type pattern begins to disappear. In figure 7
we illustrate the inhibition of the diffraction-type pattern for a fixed value of the position
x = 3.0 nm. Clearly, it fades out and is replaced by a series of oscillations, which register the
fast crossing of the precursor at x = 3.0 nm, and the remaining forerunners.

There is another interesting feature in the time evolution of |ψs
r (x, t)|2 that can be

appreciated in figure 8, in which we plot |ψs
r (x, t)|2 as a function of time in the main peak
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Figure 7. This graph illustrates |ψs
r (x, t)|2 as a function of time for a fixed value of the position

x1 = 3.0 nm, beyond 2xp. Notice that, in this case, the diffraction-type pattern clearly disappears.
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Figure 8. The time evolution of |ψs
r (x, t)|2 in order to exhibit the main peak shift of the wave,

for different values of the position: x = 0.1 nm (solid curve), x = 0.3 nm (dashed curve) and
x = 0.5 nm (dotted curve). The corresponding peak positions are p3, p2 and p1, respectively.
Despite the fact that the three curves fulfil relativistic causality, the wavefront main peak exhibits
an apparent violation of Einstein causality.

region. Surprisingly, the maximum peak of the wave appears on x = 0.5 nm (dotted curve)
earlier than the peak at x = 0.3 nm (dashed curve) and x = 0.1 nm (solid curve). This
relative time shift of the wave peak is an apparent violation of relativistic causality, and can
be interpreted as a non-causal behaviour. This arises from the fact that we are comparing the
maximum wave peak at different positions. However, we observe that the wavefront always
fulfils Einstein causality, and no signal travels faster than c in the dispersive region. Therefore,
the observed shift of the main peak may be interpreted as a reshaping of the wave and not as
a genuine violation of relativity.

It is interesting to mention that we have observed a similar non-causal behaviour in the
probability density along a classical forbidden region of a rectangular potential barrier, within a
non-relativistic framework. Moreover, some authors have also reported non-causal phenomena
in electromagnetic evanescent modes [18].
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4. Discussion

The possibility of describing the wave evolution from the transient to the stationary regime
offers a clear advantage over the asymptotic methods of solution available in the literature,
for which the short and intermediate transient regimes are inaccessible. In what follows, we
shall discuss the new features in the dynamical process of evanescent waves observed in the
previous section.

The buildup of |ψs
r |2 exhibits a very interesting behaviour: the solution, instead of just

growing monotonically towards the stationary solution |φsr |2, fluctuates around such a value
before reaching the asymptotic regime, as shown by the series of curves of |ψs

r |2 versus x
at different times (see figure 3). The effect of these fluctuations in a plot of |ψs

r |2 versus t
(x fixed) is manifested as a series of oscillations similar to a diffraction in time pattern: see
figure 6. The inset of figure 3 shows that, beyond a certain distance, an interesting structure of
the wave appears; this is the birth of the Sommerfeld-type forerunner which travels along the
potential region, as illustrated in figures 4 and 5; the head of this signal propagates at the speed
of light and can be reproduced by the first-order Bessel function J1(η) (dotted curve). The
birth of the forerunner is an important event since its propagation at longer times becomes the
dominant process; this is also the case in the context of different relativistic and non-relativistic
approaches [4,5], where the characterization of the forerunners has been recently emphasized.

At early times and for small values of the position, the main front of the wave decays
exponentially along the potential. As time goes on, the dynamics is dominated by the
propagation of the forerunners since the main front rapidly reaches its asymptotic value without
propagation. Thus, one may speak of two regimes, which, as discussed in the previous section,
are characterized by 2xp where xp is the penetration length. If we choose a position x > 2xp

and wait for the main wavefront, instead of detecting its arrival we would only register the fast
crossing of the precursor (see figure 7). The absence of main wavefront propagation in the
evanescent region is in agreement with a series of works [9,24–26] which have questioned the
existence of semiclassical wavefront propagation proposed by Stevens [1] and supported by
Moretti [2, 3].

Another important result of this work is the non-causal peakshift exhibited in figure 8.
The non-causal behaviour observed here is a consequence of the reshaping of the wave; re-
shaping effects have also been observed in the context of wavepacket evolution within both
relativistic [19] and non-relativistic [21] approaches. The role of this effects and the issue
of non-causal behaviour has been recently discussed by Deutch and Low [19] for the case of
Gaussian wavepacket evolution in the transmitted region of a potential barrier, based on ap-
proximate solutions to the Klein–Gordon equation. Although the barrier and the step potential
are different systems, both exhibit an evanescent region; hence, we believe that the non-causal
behaviour observed in [19] could be related to a reshaping process occurring inside the barrier,
similar to the reshaping observed in the step discussed in our model. However, in order to
investigate such a reshaping inside the barrier, the solution of the Klein–Gordon equation is
required for the internal region. In this respect, the analytical techniques used in this work may
provide a suitable method of solution to tackle this fundamental problem; nevertheless, this
not an easy task since the extension of our model to the case of a barrier of finite width involves
more complicated analytical properties of the solution due to the presence of resonances.

5. Summary and conclusions

We have derived an exact analytical solution to a Klein–Gordon equation for a step potential
barrier, using a cutoff plane wave initial condition. To our knowledge, this is the first model
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which allows a closed solution for the description of relativistic transient effects in a classical
forbidden region.

The main features of the spatial and time evolution along the evanescent region can be
summarized in the following points.

(i) We found a regime where the solution is exponentially suppressed and, thus, decays as a
function of x along the potential. This main part of the wave does not propagate along
the structure. The regime is characterized by a region extending from x = 0 to x ≈ 2xp,
where xp = (1/q) is the penetration length of the stationary solution (21). However,
from x ≈ 2xp onwards, the solution exhibits an oscillating pattern near the relativistic
cutoff, travelling at the speed of light, c, which can be identified as a Sommerfeld-type
precursor. Also, within the finite depth 2xp, we found in the low-energy situation that the
time evolution of |ψs

r (x, t)|2 exhibits a transient effect similar to the diffraction in time
phenomenon [13].

(ii) We showed that along the internal region there exists a time shift associated with the
main peak of the wavefunction, that can be interpreted as a non-causal behaviour along
the classical forbidden region. This of course is only an apparent violation of relativistic
causality, since in our model the wavefront always satisfies Einstein causality, i.e. no
signal travels faster than the speed of light.

The relevance of these results arises from the fact that our findings may be of interest to
elucidate on the problem of wave propagation in finite width potentials.
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